Иллюстрированный самоучитель по Java

       

Design patterns


В математике давно выработаны общие методы решения типовых задач. Доказательство теоремы начинается со слов: "Проведем доказательство от противного" или: "Докажем это методом математической индукции", и вы сразу представляете себе схему доказательства, его путь становится вам понятен.

Нет ли подобных общих методов в программировании? Есть.

Допустим, вам поручили автоматизировать метеорологическую станцию. Информация от различных датчиков или, другими словами,

контроллеров

температуры, давления, влажности, скорости ветра поступает в цифровом виде в компьютер. Там она обрабатывается: вычисляются усредненные значения по регионам, на основе многодневных наблюдений делается прогноз на завтра, т. е. создается

модель

метеорологической картины местности. Затем прогноз выводится по разным каналам: на экран монитора, самописец, передается по сети. Он представляется в разных

видах,

колонках чисел, графиках, диаграммах.

Естественно спроектировать такую автоматизированную систему из трех частей.

Первая часть, назовем ее

Контроллером

(controller), принимает сведения от датчиков и преобразует их в какую-то единообразную форму, пригодную для дальнейшей обработки, например, приводит к одному масштабу. При этом для каждого датчика надо написать свой модуль, на вход которого поступают сигналы конкретного устройства, а на выходе образуется унифицированная информация.



 Вторая часть, назовем ее

Моделью

(model), принимает эту унифицированную информацию от Контроллера, ничего не зная о датчике и не интересуясь тем, от какого именно датчика она поступила, и преобразует ее по своим алгоритмам опять-таки к какому-то однообразному виду, например, к последовательности чисел.

Третья часть системы,

Вид

(view), непосредственно связана с устройствами вывода и преобразует поступившую от Модели последовательность чисел в график, диаграмму или пакет для отправки по сети. Для каждого устройства придется написать свой модуль, учитывающий особенности именно этого устройства.


В чем удобство такой трехзвенной схемы? Она очень гибка. Замена одного датчика приведет к замене только одного модуля в Контроллере, ни Модель, ни Вид этого даже не заметят. Надо представить прогноз в каком-то новом виде, например, для телевидения? Пожалуйста, достаточно написать один модуль и вставить его в Вид. Изменился алгоритм обработки данных? Меняем Модель.

Эта схема разработана еще в 80-х годах прошлого столетия [То есть

XX


века. —

Ред.

] в языке Smalltalk и получила название MVG (Model-View-Controller). Оказалось, что она применима во многих областях, далеких от метеорологии, всюду, где удобно отделить обработку от ввода и вывода информации.

Сбор информации часто организуется так. На экране дисплея открывается поле ввода, в которое вы набиваете сведения, допустим, фамилии в произвольном порядке, а в соседнем поле вывода отображается обработанная информация, например, список фамилий по алфавиту. Будьте уверены, что эта программа организована по схеме МУС. Контроллером служит поле ввода, Видом — поле вывода, а Моделью — метод сортировки фамилий. В третьей части книги мы рассмотрим примеры реализации этой схемы.

К середине 90-х годов накопилось много подобных схем. В них сконцентрирован многолетний опыт тысяч программистов, выражены наилучшие решения типовых задач.

Вот, пожалуй, самая простая из этих схем. Надо написать класс, у которого можно создать только один экземпляр, но этим экземпляром должны пользоваться объекты других классов. Для решения этой задачи предложена схема Singleton, представленная в листинге 3.5.



Листинг 3.5.


Схема Singleton

final class Singleton{

  private static Singleton s = new Singleton(0); 

  private int k;

  private Singleton(int i){k = i;} 

  public static Singleton getReference()(return s;} 

  public int getValue(){return k;} 

  public void setValue(int i){k = i;} 



public class SingletonTest {

  public static void main(String[] args){ 



    Singleton ref = Singleton.getReference(); 

    System.out.println(ref.getValue()); 

    ref.setValue(ref.getValue() + 5); 

    System.out.println(ref.getValue()); 

  } 

}

Класс

singleton

окончательный — его нельзя расширить. Его конструктор закрытый — никакой метод не может создать экземпляр этого класса. Единственный экземпляр

s

класса

singleton

— статический, он создается внутри класса. Зато любой объект может получить ссылку на экземпляр методом

getReference ()

, Изменить состояние экземпляра s методом s

etValue()

или просмотреть его текущее состояние методом

getValue()

.

Это только схема — класс

singleton

надо еще наполнить полезным содержимым, но идея выражена ясно и полностью.

Схемы проектирования были систематизированы и изложены в книге [7]. Четыре автора этой книги были прозваны "бандой четырех" (Gang of Four), а книга, коротко, "GoF". Схемы обработки информации получили название "Design Patterns". Русский термин еще не устоялся. Говорят о "шаблонах", "схемах разработки", "шаблонах проектирования".

В книге GoF описаны 23 шаблона, разбитые на три группы:

1. Шаблоны создания объектов: Factory, Abstract Factory, Singleton, Builder, Prototype.

2. Шаблоны структуры объектов: Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.

3. Шаблоны поведения объектов: Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy, Template, Visitor.

Описания даны, в основном, на языке C++. В книге [8] те же шаблоны представлены на языке Java. Той же теме посвящено электронное издание [9]. В книге [10] подробно обсуждаются вопросы разработки систем на основе design patterns.

Мы, к сожалению, не можем разобрать подробно design patterns в этой кни-те. Но каждый программист начала XXI века должен их знать. Описание многих разработок начинается словами: "Проект решен на основе шаблона", и структура проекта сразу становится ясна для всякого, знакомого с design patterns.

По ходу книги мы будем указывать, на основе какого шаблона сделана та или иная разработка.


Содержание раздела