Design patterns
В математике давно выработаны общие методы решения типовых задач. Доказательство теоремы начинается со слов: "Проведем доказательство от противного" или: "Докажем это методом математической индукции", и вы сразу представляете себе схему доказательства, его путь становится вам понятен.
Нет ли подобных общих методов в программировании? Есть.
Допустим, вам поручили автоматизировать метеорологическую станцию. Информация от различных датчиков или, другими словами,
контроллеров
температуры, давления, влажности, скорости ветра поступает в цифровом виде в компьютер. Там она обрабатывается: вычисляются усредненные значения по регионам, на основе многодневных наблюдений делается прогноз на завтра, т. е. создается
модель
метеорологической картины местности. Затем прогноз выводится по разным каналам: на экран монитора, самописец, передается по сети. Он представляется в разных
видах,
колонках чисел, графиках, диаграммах.
Естественно спроектировать такую автоматизированную систему из трех частей.
Первая часть, назовем ее
Контроллером
(controller), принимает сведения от датчиков и преобразует их в какую-то единообразную форму, пригодную для дальнейшей обработки, например, приводит к одному масштабу. При этом для каждого датчика надо написать свой модуль, на вход которого поступают сигналы конкретного устройства, а на выходе образуется унифицированная информация.
Вторая часть, назовем ее
Моделью
(model), принимает эту унифицированную информацию от Контроллера, ничего не зная о датчике и не интересуясь тем, от какого именно датчика она поступила, и преобразует ее по своим алгоритмам опять-таки к какому-то однообразному виду, например, к последовательности чисел.
Третья часть системы,
Вид
(view), непосредственно связана с устройствами вывода и преобразует поступившую от Модели последовательность чисел в график, диаграмму или пакет для отправки по сети. Для каждого устройства придется написать свой модуль, учитывающий особенности именно этого устройства.
В чем удобство такой трехзвенной схемы? Она очень гибка. Замена одного датчика приведет к замене только одного модуля в Контроллере, ни Модель, ни Вид этого даже не заметят. Надо представить прогноз в каком-то новом виде, например, для телевидения? Пожалуйста, достаточно написать один модуль и вставить его в Вид. Изменился алгоритм обработки данных? Меняем Модель.
Эта схема разработана еще в 80-х годах прошлого столетия [То есть
XX
века. —
Ред.
] в языке Smalltalk и получила название MVG (Model-View-Controller). Оказалось, что она применима во многих областях, далеких от метеорологии, всюду, где удобно отделить обработку от ввода и вывода информации.
Сбор информации часто организуется так. На экране дисплея открывается поле ввода, в которое вы набиваете сведения, допустим, фамилии в произвольном порядке, а в соседнем поле вывода отображается обработанная информация, например, список фамилий по алфавиту. Будьте уверены, что эта программа организована по схеме МУС. Контроллером служит поле ввода, Видом — поле вывода, а Моделью — метод сортировки фамилий. В третьей части книги мы рассмотрим примеры реализации этой схемы.
К середине 90-х годов накопилось много подобных схем. В них сконцентрирован многолетний опыт тысяч программистов, выражены наилучшие решения типовых задач.
Вот, пожалуй, самая простая из этих схем. Надо написать класс, у которого можно создать только один экземпляр, но этим экземпляром должны пользоваться объекты других классов. Для решения этой задачи предложена схема Singleton, представленная в листинге 3.5.
Листинг 3.5.
Схема Singleton
final class Singleton{
private static Singleton s = new Singleton(0);
private int k;
private Singleton(int i){k = i;}
public static Singleton getReference()(return s;}
public int getValue(){return k;}
public void setValue(int i){k = i;}
}
public class SingletonTest {
public static void main(String[] args){
Singleton ref = Singleton.getReference();
System.out.println(ref.getValue());
ref.setValue(ref.getValue() + 5);
System.out.println(ref.getValue());
}
}
Класс
singleton
окончательный — его нельзя расширить. Его конструктор закрытый — никакой метод не может создать экземпляр этого класса. Единственный экземпляр
s
класса
singleton
— статический, он создается внутри класса. Зато любой объект может получить ссылку на экземпляр методом
getReference ()
, Изменить состояние экземпляра s методом s
etValue()
или просмотреть его текущее состояние методом
getValue()
.
Это только схема — класс
singleton
надо еще наполнить полезным содержимым, но идея выражена ясно и полностью.
Схемы проектирования были систематизированы и изложены в книге [7]. Четыре автора этой книги были прозваны "бандой четырех" (Gang of Four), а книга, коротко, "GoF". Схемы обработки информации получили название "Design Patterns". Русский термин еще не устоялся. Говорят о "шаблонах", "схемах разработки", "шаблонах проектирования".
В книге GoF описаны 23 шаблона, разбитые на три группы:
1. Шаблоны создания объектов: Factory, Abstract Factory, Singleton, Builder, Prototype.
2. Шаблоны структуры объектов: Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy.
3. Шаблоны поведения объектов: Chain of Responsibility, Command, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy, Template, Visitor.
Описания даны, в основном, на языке C++. В книге [8] те же шаблоны представлены на языке Java. Той же теме посвящено электронное издание [9]. В книге [10] подробно обсуждаются вопросы разработки систем на основе design patterns.
Мы, к сожалению, не можем разобрать подробно design patterns в этой кни-те. Но каждый программист начала XXI века должен их знать. Описание многих разработок начинается словами: "Проект решен на основе шаблона", и структура проекта сразу становится ясна для всякого, знакомого с design patterns.
По ходу книги мы будем указывать, на основе какого шаблона сделана та или иная разработка.